Hybrid energy storage optimal sizing for an e-bike
Authors
Abstract:
The Energy Storage System (ESS) is an expensive component of an E-bike. The idea of Hybrid Energy Storage System (HESS), a combination between battery and Ultra-Capacitor (UC), can moderate the cost of E-bike ESS. In this paper, a cost function is developed to use for optimal sizing of a HESS. This cost function is consisted of the HESS (battery, UC and DC/DC converter) cost and the cost of battery replacements during 10 years. The battery lifetime and riding pattern limit the life span of ESS. The “Portuguese standard NP EN 1986-1” riding pattern is used in this research. The Genetic Algorithm (GA) is used to solve the optimization problem. The results show that the cost and weight of HESS are clearly better than optimally sized battery ESS.
similar resources
Multi-objective Optimal Sizing and Energy Management of Hybrid Energy Storage System for Electric Vehicles
Hybrid energy storage system (HESS) composed of lithium-ion battery and supercapacitors has been recognized as one of the most promising solutions to face against the high cost, low power density and short cycle life of the battery-only energy storage system, which is the major headache hindering the further penetration of electric vehicles. In this work, the HESS sizing and energy management p...
full textRobust optimal sizing of an hybrid energy stand-alone system
This paper deals with the optimal design of a stand-alone hybrid system composed of wind turbines, solar photovoltaic panels and batteries. To compensate for a possible lack of energy from these sources, an auxiliary fuel generator guarantees to meet the demand in every case but its use induces important costs. We have chosen a two-stage robust approach to take account of the stochastic behavio...
full textA Simulation Framework for Optimal Energy Storage Sizing
Despite the increasing interest in Energy Storage Systems (ESS), quantification of their technical and economical benefits remains a challenge. To assess the use of ESS, a simulation approach for ESS optimal sizing is presented. The algorithm is based on an adapted Unit Commitment, including ESS operational constraints, and the use of high performance computing (HPC). Multiple short-term simula...
full textOptimal Sizing and Placement of Grid- Level Energy Storage
The economic benefit realized from energy storage units on the electric grid is linked to the control policy selected to govern grid operations. Thus, the Optimal Sizing and Placement (OSP) of such units is also dependent on the operating policy of the power network. In this work, we first introduce Economic Model Predictive Control (EMPC) as a viable economic dispatch policy for transmission n...
full textAn Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing
The application of a stationary ultra-capacitor energy storage system (ESS) in urban rail transit allows for the recuperation of vehicle braking energy for increasing energy savings as well as for a better vehicle voltage profile. This paper aims to obtain the best energy savings and voltage profile by optimizing the location and size of ultra-capacitors. This paper firstly raises the optimizat...
full textOptimal Component Sizing and Forward-looking Dispatch of an Electrical Microgrid for Energy Storage Planning
Optimal design of an electrical microgrid and sizing of its components seeks to balance capital investment with expected operational cost while meeting performance requirements. Calculating operational cost requires scheduling each microgrid component over some time period (dispatching) for each design evaluated. Heuristic or rule-based dispatch strategies typically consider only single time in...
full textMy Resources
Journal title
volume 5 issue 2
pages 1016- 1025
publication date 2015-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023